
Performanee of a Remote Instrumentation Program

Michael Kupfer

Computer Science Division
Department or Electrical Engineering and Computer Science!!

University or California
Berkeley, CA 94720

ABSTRACT

One application of distributed computing is remote system instrumentation.

Such instrumentation programs require good response with low overhead to pr~

vide timely results without disturbing the system being measured. A remote pr~

cedure call system, such as the Circus system developed at Berkeley, allows pr~

grammers to write distributed programs with little more effort than is required to

write local programs. This paper compare!! a Circus-based implementation or a
Berkeley UNIXt tool (vmstat) with one based on the byte-stream protocol TCP.

The Circus version makes for much cleaner code, but it requires more start-up

time and higher CPU overhead than the TCP version. We conclude that the

present incarnation or Circus is not acceptable for our work, but that future ver

sions of Circus should prove valuable.

1. Introduction

One application of distributed computing is remote instrumentation, which allows a user on

one machine to monitor the performance or a different machine without logging on to that

machine. Such a program consists or at least two processes: a data-gathering server process on

the remote machine, and a data-displaying client process on the local machine. Ir only one server

process is used, it multiplexes connections to all its clients. An alternative is to give each client

process its own server process.1 In either case the communication system seen by the client and

server clearly must guarantee the accuracy or a delivered message. In addition, we feel that the

communication system should guarantee message delivery. A dropped message affects the client as

though the remote machine had suddenly slowed to a crawl. Thus dropped messages would

unnecessarily annoy users and possibly confuse analysis programs. This problem would be toler

able if messages were infrequently lost. Unfortunately, casual instrumentation or Ethernet inter

faces has shown input error rates (hence, dropped packets) or 50-100 or more per hour, which is

simply too high to ignore.

Furthermore, we want a communication system that is general enough that we can easily

write distributed versions or existing tools or write new distributed tools from scratch. However,

the communication system should also provide adequate performance in at least two areas: pr~

gram initialization and system overhead. Program initialization should be fast because we

t UNIX is a tradenwk oC Bell Laboratories.
This work was sponsored in part by the Defense Advanced Resurch Projects Agency (DoD), ARPA Order No.

4031, monitored by the Naval Elfftronics Syste!DI Command under contract No. N0003~C-0235. The views

and conclusions contained in this docu~nt are those of the author and should not be interpreted as represent.

inc official policies, either expressed or implied, of the Defense Research Projects Agency or of the US Gover

ment. Additional support was provided by the State of Calif'ornia MICRO program, 1fant number 532422 -

IGIIOO.
1 Either technique allows the client the option of talkinc to multiple servers.

11 February 1985

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 1985 2. REPORT TYPE

3. DATES COVERED
 00-00-1985 to 00-00-1985

4. TITLE AND SUBTITLE
Performance of a Remote Instrumentation Program

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
One application of distributed computing is remote system instrumentation. Such instrumentation
programs require good response with low overhead to provide timely results without disturbing the system
being measured. A remote procedure call system, such as the Circus system developed at Berkeley, allows
programmers to write distributed programs with little more effort than is required to write local
programs. This paper compares a Circus-based implementation of a Berkeley UNIX tool (vmstat) with one
based on the byte-stream protocol TCP. The Circus version makes for much cleaner code, but it requires
more start-up time and higher CPU overhead than the TCP version. We conclude that the present
incarnation of Circus is not acceptable for our work, but that future versions of Circus should prove
valuable.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

- 2-

sometimes want the monitoring tools to tell us what is hap~ning now, not what is happening 10

seconds from now. Long-term system overhead should be low enough that the tools can provide

relatively long traces without disturbing the system being measured (e.g., less than 1% of the

CPU should be used for the instrumentation program, and it should not cause any significant

change to the system's swapping or paging behavior). For the same reason, short-term

overhead-which we will not consider in this pa~r-should also be low. However, short-term

overhead will be somewhat higher than long-term overhead because of initialization costs and

because new UNIX processes usually get higher priorities than older ones.

One reliable and general communication mechanism is the remote procedure call (RPC),

which by and large allows the application programmer to ignore tbe distributed Mpects of the

program. Eric Coo~r's Circu~ !Cooper 84a, Cooper 84b], which is based on Xerox's Lupine sys

tem !Birrell 83], is a remote procedure call system that runs under Berkeley UNIX 4.2BSD. Circus

differs from an earlier Berkeley UNIX RPC system !Larus 83] in that it is based on datagram ser

vice rather than on virtual circuits.

This pa~r evaluates the performance of a Circus-based version of vm~tat2 by comparing it

with an implementation based on the byte-stream protocol TCP !TCP 81]. In the following sec

tion we present a brief introduction to what a programmer works with when using Circus and

TCP on a 4.2BSD system. Section three describes the performance tests that were used. The

results of these tests are described in section four, and an analysis of the results is in section five.

In section six we present our conclusions, in section seven we suggest additional research, and in

section eight we summarize the pa~r. Appendices A and B contain sample code from the Circus

and TCP-based programs (both client and server), with an emphasis on the differences between

the two approaches.

z. Programmer'• vtew

Circus provides the UNIX programmer with a set of facilities that are like Lupine's, except

that sor.~e changes were necessary for compatibility with the Berkeley UNIX environment. First

the programmer defines an interface of types, global variables, and procedure beadings using a

Mesa-like language derived from Xerox's Courier specifications !Mitchell 791 !Courier 81]. From

this interface the rig compiler generates C code !Kernighan 78] for the server and client stubs, as

well as a header file that contains C definitions for the types and variables specified in the inter

face. The programmer codes two programs, one for the client and one for the server. Taken

together, these two parts differ little from a modular non-distributed version or the program.

Most of the differences are embodied in a small amount of code that manages such chores as bind

ing the client to the server. A run-time library and the client and server stubs handle communic~

tion between the client, the ringma!ter binding process (which corresponds to Grapevine in the

Xerox world), and the server. A programmer using Circus also bas the opportunity to program

matically type-check the client/server interface with the UNIX program lint. Relevant portions of

the Circus-based vm!tat are in Ap~ndix A.

As part of its Interprocess Communication (IPC) facilities !Leffler 83], 4.2BSD provides the

Ut-.1X programmer with TCP service. In contrast with using Circus, a TCP-based program

requires no extra paraphernalia such as rig (the stub compiler). The price is that the programmer

must do more work, such as explicitly opening a connection between the client and server and

managing I/0 errors. To handle multiple clients simultaneously, the server must either multiplex

its connections or fork otl' a new server process to handle each new client. If there is a server pro

cess for each client, then the client bears the additional burden of telling its server to exit when it

(the client) is ready to quit. At best, this additional work is merely an annoyance; at worst, it

provides ample opportunity for programming mistakes. An additional problem with using TCP is

that there is no way to verify the type-correctness of the client and server communication rou

tines, other than checking the individual read and write statements by band (which is also liable

to mistakes). Relevant portions of the TCP-based vm~tat are in Appendix B.

2 vmstr.t produces statistics about the virtual memory subsystem in Berkeley UNDC.

11 February 1985

-3-

Thus, the most immediate advantage or Circus is its ease or use. Another expected advan

tage results from Circus' use or datagram communication: we expect lower start-up overhead from

using Circus than we do rrom using a byte-stream protocol like TCP. An expected disadvantage

or Circus is that its generality may make communication slower. For example, Circus allows

transparent communication between different machine types, which may lead to unnecessary

message-copying or rormat conversion in tbe case where both machines are or the same type. A

realistic TCP-based implementation would also have to deal with this heterogeneity problem, but

it may be possible to hand-tune the communication code to obtain greater efficiency than is possi

ble with Circus.

In short, according to our introductory criteria ror a distributed monitoring tool, we expect

that Circus would make an excellent tool ror writing remote instrumentation programs ir we could

obtain adequate perrormance rrom it.

3. The Testa

We propose two types or perrormance tests: one test measures the elapsed start-up time

required by a program; the other test measures the long-term CPU utilization or a program. The

point or the start-up test is that any useful instrumentation utility must provide quick service

without high initialization costs. The point or the utilization test is that any useful instrumenta

tion utility must not significantly disturb the system it. is measuring.

Our first test consisted or running a program tha\, invoked vm.,tat 300 times and recorded

the accumulated execution time. We perrormed this test on a V AXI 750 with 2 megabytes or

physical memory running in single-user mode. In one case we performed the test 10 times with no

competing load, and in a second case we performed the test 10 times while competing with a load

or seven simulated "active" users.4

The second test consisted or causing vm~tat to iterate {display one line or statistics) 10,000

times at 5-second intervals. When the test finished, both the client and the server recorded inror

mation such as their elapsed times and CPU usage. We ran this test 7 times on a VAX 780 with

4 megabytes or memory, at various hours or the day and night, without attention to machine

load. We also ran a similar test-using 20,000 iterations instead or 10,000--to veriry that we

could extrapolate our results to times longer than a day. We picked 5 seconds as the interval

length because the Berkeley UNIX kernel updates its virtual memory statistics at 1- and 5-second

intervals. We did not repeat the tests using a 1-second interval because, as we shall see in the

next section, the CPU utilization at the 5-second refresh rate was high enough that additional

tests seemed pointless.

4. Result•

The results or the first test are summarized in Table 1. Each number represents an average

start-up time in seconds. We also repeated the start-up tests 3 times with the original (single

process) version or vm~tat ror rough comparison purposes.

Table 1: Start-up times for TCP- and Circus-based versions

version with load no load

Circus 4.63 1.36

TCP 1.14 0.708

original 10.2 2.04

Table 2 gives the results for the second test. We obtained these numbers by compiling code

into the vm~tat client and server so that each program recorded its elapsed ("wall-clock") running

3 VAX ill a trademark or Di&ital Equipment Corporation.

4 Each Wier wu llimulated by a 1hell acrip\ tha\ repeatedly did tasb auc:h u c:ompil&tion, editin&, and tile

c:opyin,.

11 February 1985

- 4-

time and its system and user CPU requirements. We calculated the "percent or system used" as

the sum or the CPU time used divided by the elapsed time. Notice, however, that we ignore the

requirements of ringma.!ter (the binding process) for the Circus version, and we ignore certain

one-time start-up costs for both versions. Again, we also repeated the test a few times with the

original vm.!tat for rough comparison purposes.

Table 2: Long-term CPU utilization

system time user time %of system

(sec) (sec) used

Circus client 332.4 190.6 1.01

Circus server 437.4 123.6 1.09

Circus (total)
2.10

TCP client 50.3 108.7 0.32

TCP server 176.6 .f7.0 0.44

TCP (total)
0.76

original (total) g7 117 0.44

6. Analy•l•

Having seen these results, we now must interpret them.

6.1. Start-up Delay

Table 1 shows that the TCP version or the program consistently starts up faster than the

Circus version. This result may seem surprising, as byte-stream protocols have a reputation for

high overhead in establishing connections. However, the protocol-related activities may only be a

small part of all the program's activities. Using the gprof profiler !Graham 82J, we see that for

one run of 100 iterations, the TCP-based client spends 30 ms (1% or its total CPU time) esta~

lishing a connection; the Circus-based client requires less than 10 ms (0.2%) of CPU time to con

nect to the server. However, to find a server, the Circus-based client must send a message to ring

ma.!ter and then wait for a reply, which is entirely transparent to gprof and is presumably slow.

Contrast this with the TCP-based version, which spends 100 ms looking up the server's Internet

address in a well-known file. Thus, we hypothesize that the Circus-based client process requires

less CPU time than the TCP-based client, but it requires more elapsed time because or client

server binding.

Both versions are much faster than the original version of vm.!tat. We obtain this savings

because the original version does an nli.!t, which tells where the interesting numbers live in kernel

memory, each time it is invoked. Both or the experimental versions do only one nlist, when the

server is started up, and they re-use that information when a new client executes. Thus the com

parison between the original and experimental versions is biased, but it points out an advantage or

using the client/server paradigm for UNIX instrumentation programs.

&.J. CPU Utlllzatlon and Steady-State Delay

As with the first test, the Circus version performs worse than the TCP version: it uses about

3 times as much or the CPU as the TCP version does. There are many causes for this difference,

some or which are inherent to an RPC system, some or which result from Circus's design, and

some or which result from Circus's implementation, which is untuned and entirely at the user

level. One inherent problem of the RPC-based system is that it must send a message to the

server for every information message that the server sends back. In the TCP-based system, the

server just keeps sending information until the client sends one message ending the link. Gprof

analysis suggests that the Circus-based client can spend up to 14% or its time (ie., 0.14% or the

CPU) just sending these request messages. Also, the Circus-based version incurs extra byte

copying costs (compared with the TCP-based version) in parameter passing. This copying comes

11

-5-

from moving whole structures around; the TCP-based version just moves pointers.

There is another problem that is not inherent to RPC systems in general but which results

from Circus's charter as a reliable remote procedure caD system. Circus allows more than one

process to export a given service. When a client makes a remote caD, the client stub sends

requests to all servers that export that call and uses a voting scheme to determine the result that

it returns. Circus does provide a mechanism that allows the client to specify which server (or

servers) to use. However, the techniques necessary to handle communication in the general case

(multiple servers) can have appreciable cost even when only one server is called. Thus remote

instrumentation programs, which do not need this replication mechanism, must bear this added

cost when using Circus.

The lack or tuning in Circus leads to problems such as unnecessary malloc (memory alloca

tion) calls, expensive queueing operations, and unnecessary copying. The mallocs are done at each

call, when the client stub allocates and returns buffer space. The stub could avoid these problems

by maintaining its own pool or buffers. The queueing operations, which support communication,

could probably be made less expensive by using register variables !Kernighan 78]. Although any

general-purpose communication mechanism must provide machine independence, it seems reason

able for the stubs to recognize that they are running on compatible architectures and agree to use

that architecture's data format, rather than wasting cycles converting to and from some general

purpose rormat.5

There are two good reasons for putting Circus's reliable, procedure-oriented communication

protocol in the kernel.8 Because Circus runs entirely in user space, it must implement timeouts

using the alarm library routine, which means that Circus preempts SJGALRM signals. The first

problem is that this preemption forces users who want an alarm-clock function to use an

inefficient kludge. The second problem is one or performance. When the stub sends off a request,

it must make at least four system calls: the first call sends the request, the second call sets the

alarm, the third call (select) waits for a reply from any or the servers, and the fourth call finally

reads in the result. Each additional server requires two additional system calls. A kernel-based

implementation of Circus would avoid both or these problems.

e. Conelualona

The purpose or the preceding tests was to evaluate a Circus-based remote instrumentation

program. These tests lead us to conclude that Circus's current incarnation is not ready for use in

production programs. The problem is not the slower elapsed start-up time or the Circus-based

version, which is negligible (and certainly faster than the original version or vmstat). A more seri

ous problem is the CPU overhead that Circus requires, which is twice our 1% guideline. For

tunately, tuning the performance or Circus, removing the replication mechanisms, and moving the

communication code into the kernel should solve this problem. We predict that once this task has

been done, Circus will be an excellent tool for distributed monitoring programs. In the meantime,

programmers will have to balance their desperation for such a distributed program against the

pain or writing a program based on TCP.

7. Addltlonal Reaeareh

While this paper provides generally encouraging results, additional work should be done to

confirm our optimism. In particular, we would like to repeat these tests using the non-replicated,

kernel-based version of Circus being developed by Karen White !White 85J, after it has been as

thoroughly tuned as the Berkeley UNIX TCP implementation.

Furthermore, there are metrics other than the ones that we have chosen. The most obvious

candidate for additional testing is memory usage. A server with a large working set size (e.g.,

5 The desip Cor a new version ~ Circua induds thil rtub-t.o-nub handshake and a fix Cor the bu«er spaee

problem.

• "relia.ble" u in "IU&ranteed delivery c:l uneorrupted data," not as in "replicated."

11 February 1985

- 6 -

from buffer requirements) will certainly disturb the system which it is trying to measure, even if

its measured CPU utilization is low.

8. Summar)'

Having identified an interesting class or distributed computing programs (remote instrumen

tation), we have decided on certain performance requirements and a possible technique Cor writing

programs that belong to that class (remote procedure calls). We have built a realistic example

program using this technique (by modifying vmstat), and we have obtained encouraging results by

comparing this example program with a version based on a different technique (TCP). We expect

that as Circus, a UNIX implementation of this technique, is refined, it will compare favorably with

its competitors.

0. Acknowledgement.

Thanks are owed to Eric Cooper, Circus' creator, Cor making Circus available and answering

many questions. Thanks are also owed to Edward Hunter, Bart Miller, and assorted others Cor

their comments and suggestions.

10. Reference.

[Birrell 83J
A. Birrell and B.J. Nelson. Implementing Remote Procedure Calls. ACM Tran~action~ on

Computer Sy,tem~, Volume 2, No. 1, February 1984.

[Cooper 84aJ
E. C. Cooper. Circus: A Replicated Procedure Call Facility. Proceeding~ of the 4th Sympo

~ium on Reliability in Di~tributed Software and Databa"e Sy,tem,, October 1984.

[Cooper 84bJ
E.C. Cooper. Mechanisms Cor Constructing Reliable Distributed Programs. Ph.D. disserta

tion, Computer Science Division, University or California, Berkeley. In preparation.

[Courier 81J
Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox System Integra

tion Standard 038112, December 1981.

[Graham 82J
S.L. Graham, P.B. Kessler, and M.K. McKusick. Gpror: A Call Graph Execution Profiler.

Proceeding" of the SIGPLAN '82 Sympo,ium on Compiler Con,truction, SIGPLAN

Notice,, Vol. 17, No.6, pp. 120-126, June 1892.

[Kernighan 78J
B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-Hall, New Jer

sey, 1978.

[Larus 83J
J. Larus. On the Performance or Courier Remote Procedure Calls Under 4.1c BSD. Report

No. UCB/CSD 83/123, University or California at Berkeley, August 1983.

[Leffler 83J
S.J. Leffler, R.S. Fabry I W.N. Joy. A 4.2bsd Interprocess Communication Primer, draft or

July 27, 1983. Computer Systems Research Group, University or California, Berkeley, 1983.

[Mitchell 79J
J.G. Mitchell, W. Maybury, and R. Sweet. Mesa language manual (Version 5.0). Technical

Report CSL-7{}-9, Xerox Palo Alto Research Center, 1979.

[TCP 81J
Transmission Control Protocol. RFC 793, Information Sciences Institute Marina del Rey,

California, September 1981.

11 February 1985

- 7-

!White 85]
K. White. Untitled M.S. report, Computer Science Division, University of California,

Berkeley. In preparation.

11 February 1985

- 8 -

Appendb Az por"on• of the Clrcu.-bued Ymdat

1.1 10/18/84

vmmeter: ';ype - record I

);

v swtch: loas cardiaal,
v -trap: loas cardiaal,
v:=syscill loas cardlaal,
v intr: loas cardlaal,
v-soft: loas cardiaal,
v-pdma: loas cardiaal,
v =pswpin: loas cardiaal,
v pswpout: loas cardiaal,
v =pgin: loas cardiaal,
v pgout: loas cardlaal,
v-pgpgin: loas cardlaal,
v-pgpgout: loas cardiaal,
v-in trans: loas cardlaal,
v-pgrec: loas cardiaal,
v:=xsfrec: loas cardbtal,
v xi!ree: loas card.iaal,
v:=e~od: loas cardiaal,
v zfod: loas cardiaal,
v-vrfod: loas cardiaal,
v-nexfod: loas cardlaal,
v-nzfod: loas cardiaal,
v-nvrfod: loas cardbtal,
v-pgfrec: loas card mal,
v :=raults: loas card mal,
v scan: loas cardbtal,
v-rev: loas cardbtal,
v-seqfree: loas cardiaal,
v-dfree: loas cardiaal,
v -fastpgrec: loas cardlaal,
v =swpin: loas cardiaal,
v_swpout: loas cardiaal

vmtotal: ';ype - record
t_rq: U.'epr,
t_dw: iB'eser,
t_pw: bt'epr,
t_sl: iD'eser,
t_sw: ia'epr,

);

t_vm: loas U.'epr,
t_avm: loas ia'epr,
t_rm: iat.eser,
t_arm: ia'epr,
t_vmtxt: loas iB'eser,
t_avmtxt: loas ill'eser,
t_rmtxt: ia'eser,
t_armtxt: ill'eser,
t_free: la'eser

forkstat: ';ype - record I
cnt!ork: loas ill'eser,
cntvfork: loas blt.eser,

ead.

J;

sizf'ork: loa11 la&e~~er,

sizvf'ork: loa11 la&e~~er

- 0 -

doubleFloat: \TIM - UT&J' 2 of loa11 la&e~~er;

CPUSTATES: la\epr - 4; /rom <•p/dlc.ll>
DK_NDRIVE: laie!~er - 4; from <•p/dlc.ll>

VMSTATS: '~ - record I packafe of virtual memorr •t•t•

busy: loa11 la\epr,
time: UT&J' CPUSTATES of loa11 la\ecer,

:lifer: arr&J' DK_l\'DRIVE of loa11 la\epr,

Rate: vmmet.er,

J;

Total: vmtotal,
Sum: vmmet.er,
Forkstat: rorkstat,
rectime: loa11 carcllaal,
pgintime: loa11 cardiaal

disk drive: \TIM - record
- name: e\rla11,

unit: la\ecer
J;

Time_t: '~ - loa11 la\ecer;

vm_init:

J;

\TIM - record I
drive: arr&J' DK NDRIVE

hz: loa11 ia\ep;,
phz: loa11 la\epr

vm_info: \~ - record
time: Ti~ _ t,

J;

s: VMSTATS,
deficit: loa11 la\epr,
etime: doubleFloat,

nintv: loa11 la\epr

- info /or lid drivu

initial mu•a1e to dimt

of disk_drive,
dock rate

- profilinf doclc ratef

regular VM .tat• info
time that numben wen 1ottm

anticipated memorr leficil

vrnstat_inro: procedure tr!T!'tC&!l: booleaa) re\arae

rmroPkt: vm_in!o);

vrnstat_init: procedure re\urae fmitPkt: vm_initJ;

- 10 -

#ifadef lint
alatic daal' "scc:sid2 - •O(#)vn¥tat.c

'lfoeadif

#iaclade
pel a de
#iaclade
#iaclade
#i.aclade
#i.aclade
#defiae
#defiae
ofderlDe

<sys/pa.ram.h>
<stdio.h>
<strinp.h>

<sysfnn.h>
<sysldk.h>
"vmstat_de!s.h•
HOSTNSIZE 255

YES I
NO 0

ot HZ;
cllal' bost[HOSTNSIZE); r name of tAt lo.r 10t want to tall to • I

r Sfeep time between refruAu • I •••iped st~;
vm init initPkt; r init paelet • 1
vm=:inro inf'oPkt; r info paelet Jo" one call • 1

#derme INTS(x) ((x) - (u + phs))

r
• Print VM •tati•tie•, •.inf • remote •tf'Wf' to collect tlt ~.U.

• U•u Ef'ie CooJ~eF·• Ciret.~• /of' RPC .
• I

main(a.rgc, a.rgv)

{

lat a.rgc;
c ••a.rgv;

iat lin~;

lat iter;
e:dera c•al' _sobuf0;
boole&n n.rstCall;

r eount linu /or Aeadmnf • I
r nul'!'lbef' of ittf'ation• to male • 1

if (a.rgc > 1 && strcmp(a.rgv(l], "-t") -=- 0) {
set_ trr.ce _ fla.p(a.rgv[2));

argc -=- 2;
&rgv +- 2;

}

setbul'{stdout, _sobuf);

st~ - s; r default tleep time • 1
(void) gethostna.me{host, HOSTNSIZE);J• default lt.o.t: '" • I
argc-, argv++;

r
• Figure out how manv ittf'ation• to mde and lt.ow lon1 for eaelt.

• refre•lt.. If no nul'!'lbef'• wtf'e given, &nlv ittf'att 1 time. I/

• &nlv a refrnA in!tn~al we~~ given, ittFate forttJtf'. Othtntri•e,

• the u•tf' will tell u• how manv timu to ittFate.

.I
if (a.rgc < I)

iter - 1;
elM {

st~ - &to~ a.rgv(o]);

ll (a.rcc - 1)
iter - 0; e._
iter - ato~a.rgv(l]);

}

mazn

- 11 -

r
• Impori tAe wnnat inter/a« an~ ft!l 1-time in/o abo.t tu dodl

• rate an~ ~rivu.
•;

~t trou~ list(t, host);
if (!import:_vmst&t.()) {

)

fprint!(stderr, "ean 't import vmstat\n");

exit.(I);

initPlct - vmst&t_init.();
HZ - initPlct.phs T initPlct.phs initPlct.h•;

rirStC&ll - YES;

reprint:
lines - 20;

print!("\
procs mermry %-18.18s pace disk faults epu\n\

r b w &vm fre re &t pi po fr de n- %c%d %:%d %c%d %:%d in ry cs us ry id\n",

host,
iDitPlct.drive(O).na.me(O), iDitPlct.drive(o).unit,
iDitPlct.drive[l).na.me(O), iDitPlct.drive{l).unit,
initPlct.drive(2).na.me[O), initPlct.drive(2).unit,
iDitPlct.drive(3).na.me(O), iDitPlct.drive{3).unit);

loop:

)

infoPlct - vmstat info(riTStC&II);
rirStC&ll - NO; -
displayinl'o(&infoPlct);
if (-iter - 0) {

exit.(O);
)
&O_to_sleep(stime, 0);

ll (-lines <- 0)
p~ reprint;

p~ loop;

#if'ader lint
eLa&ic daar scesid0 - "C(*}vlmtatd.c
#eadir

#iJaclade <stdio.h >
#faclade <strinp.h>
#i.aclade <5Y5fioctlh>
#iJaclade <sysjparam.h>
#indade <sys,f"lle.h>
#iaclade <5Y5/vmh>
#i.aclade <5Y5Idk.h>
#iJaclade <nlist.h>
#i.aclade <sys~uf.h>
#i.aclade <sysjwait.h>
#i.aclade <sys/time.h>
#iaclade <sysftesource.h>
#ifdef vu
#iaclade <vaxubafobavar.h>
#i.aclade <vumbajmbavar.h>
#eadif
#iadade
#derlDe
#derme

r

"vmstat de!s.h"
YES 1
NO 0

- 12 -

• nit prOf"llffl timplf providu ..Jwcrutinu tvhiefa t/ee tlif!ftl eall1 Wll lin

• RPC mech11ninn. Vmrt11t_init it clllled onee (per tlimt), 10 tht tve

• don't worte time retronrmittin1 rqetiticrur information (eJ., tloell

• rote). After thot, vm~tot_info i• tolled ftltf'J time 11 tlienl tv11nt1 new~

• information .
• I

enera i.a& errno;
aaaiped stime=l;
t~_t boott~;

vm info &vglnfo;
vm:inf"o runninglnfo;
vm_init initPkt;
vm_inf"o inf"oPkt;
t~_t lastRerresh~;

t~_t now;

m&in(argc, arrv)
Ill& argc;
daar •arrv0;
{

.. , i;
t~-t initialize{);

il (argc > 1)
st~ - ato~arrv(t));

boott~ - initialize();
refresh();

il (!export_vmstat()) {

r boottime to nOUI lltltrllfU • I
r nmnint rote• • 1
r poelcet of init info • 1
r poelctt of regular info • 1
r time of to.t refre•l • 1
r (the eurrmt timeJ • 1

r 1tt t~oelc, tlirle drive info • 1
r reotl 1.t ret of vllluu • 1

Cprint.l'(stderr, "caD 't export vmstat\n");
exit(I);

}

r
• Dirurocilltt ourrtlvu fram our pormt. ni. it upuillllr

• needed if rov ute rrl to .tort up the ttrtJtr.

'I
#if'adef noOrpha~~

mazn

#eadif

} ,.

• IS •

server _loop();

• Gd tlae nomtlin /or tlae lctmel an~ ~o •nr one-time rutling of lctmel

• memorr. Rdum tlae •r•tem 6oot time, •n~ ld .,OUI. to be tlae ctarrml

• time.
•;

time \
initi~e()
{ ,. ... •;
} ,.

• Stntl inititJl tlota to tlae dimt: dod! rate an~ ~i•lc info.

• Be ture to upda.te our bufler• if VIe 1aven •t been e.llu in • long

• time.

'I
vm init
~at init{)
{ -

} ,.

If (tirne(&now) - lastRe!resh >- stime) {

lastRe!resb - now;

refresh();

}
"'•ra(initPkt);

• Stntl a me1111ge with tlae ~~m~t11t in/o in it. The &rJUmtnt rpui/iu

• wlattlatr tlai• ie tlae dient • 1 firet toll. If it i1, tlae ltrvtr 11&ouU

• give a.vtra.ge number• (a.vtrtlgttl nnee •yetem boot). Ot.latrwilt,

• the eervtr ehoultl give the going rate.

'I
vm info
~at_in!o(flrstc&!l)
boolean r JJ"Stcall;

{

} ,.

if (time(&now) - lastRefresb >- rtime) {

lastRe!resh - now;

refresh();

}

if (fu-stc&!l)
bcopy(&avglnfo, &in!oPkt, alseof(vm_in!o));

elae
bcopy(&runninglnfo, &:infoPkt, aiseof(vm_in!o));

rdara(infoPkt);

1 Re/rula tlae •a.vglnfo • an4 •runningln/o • bul/trl. Ueu tlae f(ob.l

1 eu rrent time (.,ow •).

'I
refresh()
{

}

time-t in terva.l;

in tervaJ - DOW - boottime;

getinfo(interval, &avgln!o, &runningln!o);

£nit£alize

vmstat_in£t

vmstat_info

refresh

- 14 -

Appendb Ba portion• of the TCP-b&8ed •mdat

!.I

#d_eraae VMSTAT_EXIT ·x·
#d_eraae ERRLOG •vmnatd.errlol"

r mu•are.· lriU the ev,.,.ml emanution • I
r ~or lof for the Imler ~aemon • I

i.a' busy;
loaK time!CPUSTATES);
loaK :d'er(DK_NDRIVE);

•'r•c' vmmeter Rate;
•b•d vmtotal Total;
•'rae' vmmeter Sum;
•'r•c' forkstat Forkst&t;
aaaiped rectime;
•••iped pgintime;

} VMSTATS;

r
• 1\e t~ariable• in the foliOV!inr 6loeJr are all •ml to tu client at
1 one time or another.

'I
cllar dr_na.me(DK_NDRIVE)[IO);

claar dr_unit(DK_NDRIVE);

i.a' ph:;
i.a' b%;
VMSTATS r,
time - t now;

i.a' defieit;
doable etime;
aa•iped stime;

i.a' nintv;

#defiae rate
#defiae total
#defiae sum
#defiae forkst&t

r

s.Rate
s.Total
s.Sum
s.Forkstat

r .teq time a• •peafiu br emnmon~ line • 1
r now - boottimt {lit ,. .. rml11rl

1 INITBUFSIZE i1 the num of bJ!tu nttdet to INfler the initialization ~ata:

1 tlr name, tr unit, pl&z, an~ h.
1 MESGBUFslZE i1 the num of bJ!tu neuu to bulfer one mu••re:

• now, 1, tltficit, etimt, ant ninttJ.

'I
#defiae INlTBl"FSIZE (lO"DK_I\'DRIVE'aiseoftclaar) + DK_NDRIVE'•iseoftdtar) \

+ aiseoft i•') + •iseoftia'))
#defiae MESGBl'FSIZE (•iseofttime_t) + aiseof!.VMSTATS) + •iseoftia') \

+ •iseoftdoable) + •iseofl.ia'))

claar vtn5_initbuf(IN1TBUFSIZE);

claar vtn5_mesgbuf(MESGBUFSIZE);

- 15 -

#ifadef lin~
•'-'lc claar ~ccsid2 - •O(*)vrmtat.c

~adil

#faclade <sysjpanm.h>
f:baclade <sign alb>
#iaclade <netdb.h>
#faclade <stdio.h >
#iaclade <strinp.h>
#illclade <sysf;m.h>
#iaclade <sysldk.h>
f:baclade <sys/socket.h>
#iaclade •vrr.;tat.h•
#defiae HOSTNSIZE 100

#def"me YES I
#def"me NO 0

HZ;
host(HOSTNSIZE);
10ck;

#def"me INTS(x) ((x) - {hs + phs))

r

r name of tl&e ~&on .,e .,.rat to tali to • 1
r lOUd /or tallcin, to tl&e lmJtr • I

• Print VM 1t11li•tiu, tuin1 • remote tmJer u eolleet tl&e ut• •

• I
main(&riC, arr)

{

W' &riC;
claar ·~r;

ill' lines;
ill' iter;
ex\era claar _eoburtJ;

r eount linu /or l&u4crin1 • 1
r number of iter11tim• to 1'7111ie • 1

•\rad hostent 'hp - NULL; r point• to holt ~ucriptim • I
ill' soc:kopen(); r opm• • ,,u~cet COftneetim to tl&e 1tr11er • 1
ill' quit.();

(void) signal(SIGINT, quit);
(void) signa.l(SIGHUP, quit);
setbuf(stdout, _10buf);

stime - S;
(void) ðostn~host, HOSTNSIZE);

host(HOSTNSIZE-t) - "\0';
hp - 1ethostbyn~host);

&riC-, arr++;

I.

r (4t/llult - l&olt .,e·re m) .I

• Figure out ltt1V! rMnJ i!trtJ!itm• to mde an4 l&t1VJ ltml for ucl&

• rt/red.. 1/ no number• wert given, tmlr ittr11te 1 time. If

• tmlr a re/re•l& in!mJal wa1 Jivm, ittrate forevtr. Otltt1'Wi1t,

• tlte Ult1' will tell Ul l&t1VJ m~~nr timu to ittrate.

•I

if (ar&e < 1)

}

iter - 1;

stime - ato~ arr(o));
if (&riC - 1)

iter - 0;

sock sockopen(hp, •vmstat•);

r eto•e enou1l to in/init1... • 1

.
mazn

reprint:

• Ul •

r
• Ttll tl&e 1nwr I&DVI ltml to lleep •n~ ftl anitalll (1-time}

• info.
•;

write(sock, (claar ")&:!time, alseof stime);
recv _ init(sock);
HZ - ph1 T ph1 : hs;

lines - 20;

procs memory %-18.18& P&«e disk f&ulw cpu\n\
r b w &vm rre re &t pi po rr de sr %c%d %c%d %c%d %c%d in ~ cs ut ~ id\n•.

h~
dr_n&me(o)(o), dr_unit(O), dr_n&me(1)(oJ, dr_unit[1J,
dr _ n&me[2J[OJ, dr _ unit[2), dr _ n&me[3J[O), dr _ unit[3));

loop:

}

r

recvint o(sock);
disp I &yin! o();
if (-iter - 0) {

cle&n up(sock);
exit(O);

}
if (-lines <- 0)

pia reprint;
pia loop;

• Cote/& a SIGINI' •n~ quit.
•;

quit()
{

}

cle&n up(sock);
exit(O);

r
• Ttll the lmJtF tl&tst we •re l.tme; flu•/& anr ~ate rtmGininf in

• the connectitm.
•;

claar quitnow0 - VMSTAT_EXIT;

cle&nup(L'!Ock)
ia' &sack;
{

}

claar fbuf(40118); r bufltF for J!u•Ain1 u,e connection • 1

if (send(&sack, quitnow, aiseof{quitnow), MSG_OOB) < 0) {
perror("vmst&t: sendin1 quitnow");
exit(1);

}
wlaUe (re&d(&sack, fbuf, alseol fbul) > 0)

(void) close(a.sock);

quit

cleanup

#ifadef lint
•'-'ic claar sccsid0 - "a(#}vmn~td.c

~·dif

#iJaclade <signal.h>
f:iadade <sysftime.h>
f:iadade <!YS.tflle.h>
#iJaclade <netdb.h>
#iaclade <st.dio.h >
f:iaclade <sysfioctLh>
#iaclade <!YS/Pa.n.m.h>
#iaelade <netinetfin.h>
#iaclade <errno.h>
#iaclade <sysJsod:et.h>
#iaclade <sys/vm.h>
#iaclade <sysldk.h>
#iaclade <nlist.h>
#iaelade <sys,A>w.h>
#iaclade <sysjwait.h>
#iadade <sys/resource.h>
#ifdef va.x
#iaclade <vuub~fub~vv.h>
tfiaclade <va.xmb~jmb~vu.h >

#e•dif
#iaclade <st.rinp.h>
#iaclade "vmst~t.h•
#defiae YES I
#deraae NO 0

r

- 17 -

• Thi• JI"Of"llm eY"e11te• • •oclltt, l.ou lllfm initi.Z rul.int of tAe

• leeY"ntl mcnory, one tAm bqin• an infinite loop.
1 Each tirm tltr01lgl& tl&e loop it accept• • C#l'lnection ani. forll• off

1 11 child to monage it. The clt.ill. nmplr 1md1 vrmtat number• tlt.ru it.

1 Mm the tlimt ttll• the chill. to tuit, tlt.e child tlo•u tle
1 old C#l'lnection and uit1.

'I

ill' msgsock;
e:dera ia' errno;

main()
{

ia' ~
ill' sock;
ill' reaper{);
time t boottime;
time-t initialize();

ia' ~rvsock();

sock - servsock(~vmst~t");

boottime - initia.lize();
(void) signal(SIGCHLD, re~per);

r

r •tt• up • IOclld for the lmle?' • I

• Dtnuocicte ourrtlvu from our psrmt. Tli• t. upecillllr
1 nude« i/ JIOU ure rrl to rtcrl up tle lmlef'.

'I
#ifadef noOrphu

#eadif
r ... 'I

r
I Stet(IJCeepiinf C#l'lnedionl. Tle lleeepl miglt /ail if U/e gd

• intef'f'Uptee br • cAiltl• r ezitinf. If thir laPJJmr, jurt trr
1 again. In cere of an unezpeau error, we psu1e /irrt ~/ore

mazn

}

r

- 18 -

• rdf'Jiinf. Tlm! it • B-foU motive /of' tlit: (1) Jivm tllf7W
• bf'utlain1 f'Oom, malj6e tle llemtl Ulill fd itt ad to1etle.. an4
• tAm we won •t fd tle tame ef'f'Of' •1ein. {t!} at lurt tle ef'f'Of'

• /of file 111on •t lf'DIII •• f'IJpitllr.
•;

(void) lis1.en (110ek, 6);
for (;;) {

}

~gsoek - aeeept{!IOCk, (•& ... d 10chddr ~. (Ia' ~);
if (rnspock < 0) {

}

if (errno 1- EINTR) {
perror{"vmrtatd: accept");
1leep ((aaaiped) 6);

}

if (fork() - 0) {

}
(void) eloee{!IOCk);
doTheDirtyWorlc(boottime);

(void) eloee(mspoek);

r feAiltiJ •1

• Wait •ntil • elt.iltl proea1 e:ritt .
• I

reaper{)
{

}

r

aaioa wait status;

wlaile (wait3{&status, WNOHANG, (•&rae\ rus&«e ~) > 0)

• Get tlae nemtlirl for tlae lremtl anti tlo anr one-time rutlin1 of
• lremtl memDf'JI. Retum tlae rv-tem boot time.

•;
time t
initialize()
{
r ... -~
}

r
• T/ae elailtl firrt reetlr tlae lleep time (ie., tle nmpinr rete} cnll
• rmdr initial in/ormation rue/a •• tlae device ncmu, t/aeir "vnit •,,
• anti IC1f'm eloelr info. It I lam ruelculelu lDUI I on, it., bem nnee

• rvrtem boot (tlair ir uretl once, ro tlaat we un ret lle long-tef'm
• eve..efe relu nnu boot lime; eft e.. 1/ael, we ure tlae currmt rater).
.I

doTheDirtyWork(boottime)
time t boottime; r •v-tem boot lime • 1
{ -

Ia' oob();

(void) sip~SIGURG, oob);
{ia' pid - -,etpid();

r et~telt.u SIGURG • I

(void) ioet~mspoek, SIOCSPGRP, (dtar ")l:pid);}

send_ in it();
read(msgsock, (dtar ")l:stime, •i•-r lltime);

(void) time(.how);
nintv - DOW - boottime;

reaper

initialize

doTheDirtylVork

}

r

for (;;) {

}

~tinto();
tendinto();
•leep(stime);
niDtv - 1;

- 10 -

• Catcl • SIGURG: rul. in •nl. ,woeu1 • mu•afe /rom tile client.

•j
oob()
{

}

r

claar &buf'{t);

(void) reC'Y{m!p>ck, t.buf', aiseof t.buf', MSG_OOB);

nri\cla (t.buf'[O)) {
caH VMST AT EXIT:

}

(void) eloee(rmp>ek);
exit(O);
break;

(printl(stderr, •vrmt&t.d: unknown request: o%o\n•, t.buf'{O));

break;

• Pr.elca1e the eollutel. info in • flul/er •nl. 1ml. it ofl to the client.

•;
eendinto()
{

}

r

cllar 'buf'p - vms_mesgbuf';

beopy((cllar f)&now, buf'p, •iseof now);

buf'p +- •iseof now;
beopy((cllar f)&:s, buf'p, •iweof s);

buf'p +== •iseof s;
bcopy((cllar f)&deficit, buf'p, •iweof deficit);

buf'p +- aiseof defieit;
bcopy((claar f)&etime, buf'p, •lseof etime);

buf'p +- •iseof etime;
bcopy((cllar f)&nintv, buf'p, alseof nintv);

write(msgsock, vms_mesgbuf', MESGBUFSIZE);

• M011e the device name. ani. cloelc info into a flul/er ani. tlt.m •md it

• all ofl to the client.

•;
send init()
{ -

}

claar 'buf'p - vms_initbuf';

beopy(dr_unit, buf'p, alseof dr_unit);

buf'p +- •iseof dr unit;
bcopy(&dr_name[ol[o):- buf'p, •lseof dr_name);

buf'p +- •iseof dr name;
beopy((cllar f)&hs, buf'p, •lseof hs);

buf'p +- •i•eof hs;
bcopy((cllar f)&phs, buf'p, •beof ph%);

write{rmpock, vms_initbuf', INITBUFSIZE);

oob

sendinfo

send_init

